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1 | Introduction

Skiing and snowboarding are cherished winter activities that attract adventurers to resorts across the globe.
As ski resorts expand and introduce more slopes, navigating them can become increasingly intricate for
tourists simply seeking to enjoy their vacation. However, in this context, Google Maps lacks effectiveness
since ski lifts are typically not integrated into the mapping data. Furthermore, as of 2024, paper maps
appear outdated in this digital era.

The goal of this project is to develop a tool that allows users to input their starting point and desired
destination, providing instructions for the fastest route while considering both travel time and wait times
at lifts. To achieve this, we’'ll focus on two key tools: predictive analysis and shortest path algorithms for
dynamic graphs.

Predictive analysis will enable us to anticipate factors such as crowd levels, weather conditions and lift
operations, allowing us to offer real-time recommendations for optimal routes. Meanwhile, shortest path
algorithms will help us efficiently calculate the most time-efficient routes through the resort’s slopes and
ski lifts, considering the constantly changing availability of lifts and trails.

In the following pages, we’ll explore how these mathematical tools can be effectively utilized to implement
an efficient navigation system for ski resorts worldwide, ensuring that visitors can make the most of their
time on the slopes with minimal inconvenience.

2 | Predictive analytics

The first part of the project consists in predicting the wait times at each station of the resort, based on
the influencing factors. In our case, it has been very challenging to find real-life data that can be used to
train a predictive model. For this reason, we will provide a theoretical background on which to work on in
a (hopefully) near future when the data is available.

2.1 | Mathematical background

The data can be seen as a time-series. Mathematically, a time-series is a set of observations x, each
one being recorded at a specified time ¢. In our case, we talk about discrete time-series since the set T
of times at which observations are made is a discrete set (we assume that the observations are made
every minute). The theory of time-series is extensive, here we will provide a short introduction on the
mathematical background used to describe them, as can be found in [3].

We can see each observation x; as a realization of a random variable X;. Then, we can model the data as
a realization of the stochastic process {X;,t € T}, T 2 Ty

When analysing time-series data, we can see it as the realization of a ”decomposed” model: X; = m;+s:+Y%,
where:

B my is the trend component, a slowly changing deterministic function
B s; is the seasonal component, a deterministic periodic function with known period
B Y; is the random noise component.

The aim of time-series analysis is to extract the deterministic components (m; and s;), and find a
probabilistic model for {¥;}. Then we can use these to predict the values of X;.

With this model in mind, various techniques exist to estimate m; and s;, but as at this point we are
still unable to gather the data, this goes beyond the scope of this report. Please refer to [3] for further
information.

2.2 | Forecasting techniques
2.2.1 | ARIMA model

Since our prediction goal is closely tied to time series forecasting, the ARIMA (Autoregressive Integrated
Moving Average) model emerges as a prime candidate. It is commonly employed for time series forecasting
and excels at capturing both trend and seasonality in the data, making it potentially well-suited for our
application.

We will then proceed by providing a theoretical background of the ARIMA model, outlining its components
and mathematical framework, referring to [1].
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ARIMA (Auto-Regressive Integrated Moving Average) is a model conceptually consisting of three compo-
nents:

B AR: the autoregressive part. Autoregression is a model that regresses a variable on its past values,
for a number of lags.

m I: the differencing of the time series in order to make it stationary.

B MA: the moving average part. The moving average model regresses a variable on current and lagged
error terms.

An ARIMA model is specified by 3 parameters: p is the order of the AR model, hence the number
of included lags; d is the degree of differencing, that is, the number of times that the data have been
substituted with first-order differences; q is the order of moving average model, similarly to p.

Thus, in the model, the AR component counts for the idea that the current value of the series, Xt, can
be explained as a linear combination of p past values together with a random error wt, whereas the
MA component is conceptually a linear regression of the current value of the series against current and
previous white noise error terms or random shocks. Combining the AR and the M A models, without first
differencing the data, is what is referred to as the family of ARMA models. A time series {X; : ¢t € Z} is
ARMA(p, q) if we can write

p q
X = wy + Z ¢ Xi—i + Z 05w

i=1 j=1

where w; ~ N(0,02). The ARMA model cannot be used for our purpose because the stochastic process
defined by this model is stationary, while the process we want to describe is non-stationary. To address
this problem, we need ways to make the data stationary, and then apply ARIMA to the transformed
observations. If the root cause of non-stationarity is the presence of unit roots in the process, the data
can be made stationary through differencing. This means that we difference the series, i.e. we subtract
from each observation its first-lag value, as many times as unit roots there are. Applying an ARMA(p, q)
on a series which has been differeced d times is effectively what is referred to as an ARIMA(p, d, q).

2.2.2 | SARIMA model

A model that would even better fit our purposes is the seasonal ARIMA model, or SARIMA, an extension
of the just presented ARIMA to model even seasonal data. This model is the optimal choice for our
project as it explicitly incorporates seasonal variations, crucial for accurately predicting wait times at
resort stations influenced by factors such as crowd levels, weather conditions, and lift operations, ensuring
robust and precise forecasts.

In particular, SARIMA includes three additional components which are basically the same ones we have
seen for non-seasonal ARIMA, but with seasonal backshifts, that is, with lags being multiples of the seasonal
period. This means that SARIMA is specified by 7 parameters in total: SARIMA(p, d, q)(P, D, Q)(m),
where p, d and q are the non-seasonal parameters as above, P is the order of the seasonal AR component,
D is the number of seasonal differences (by subtracting from the data the values at the seasonal-period-
lag), Q is the order of the seasonal MA component, and m is the seasonal period. The new parameters
are estimated similarly to the non-seasonal ones, and the modelling procedure in general is almost the same.

In conclusion, SARIMA modelling, tailored to capture both seasonal and non-seasonal patterns, is
ideal for our project’s goal of predicting wait times at resort stations. With its ability to integrate
historical data and relevant factors, SARIMA ensures accurate forecasts, maximizing the effectiveness of
the algorithm in optimizing operational efficiency and enhancing user experiences.
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3 | Shortest path in dynamic graph

3.1 | Modelling the resort

As the goal of the project revolves around calculating traversal times within a ski resort, the most natural
approach was to make use of graphs, or networks.

By assigning each departure, arrival and intersection point of slopes within a ski resort a node, and each
piste and ski lift as an edge, it is possible to model its entirety in an efficient and easily manipulable
format. Indeed, storing the resort as a graph significantly reduces the space utilised, and can easily be
read by a program. Furthermore, extensive literature exists surrounding graph algorithms, which further
backs the decision to convert maps to networks.

Specifically, each edge must be directed based on whether one can descend it using skis or ascend it in
a ski lift, as shown in Figure 3.1. This intuitively represents the limitations people face when skiing;
generally, it can be assumed that skiers do not ascend a piste on their skis and do not descend by chair
lift. As a result, we decided to make use of a directed graph.

A further, but fundamental, consideration to make is how different pistes take different times to complete.
Therefore, traversing one edge might not require the same time as traversing another. The simplest
solution to this feature is to add weights to the different edges, by making use of weighted graphs.
Finally, as the waiting time will change at different moments of the day, we will adopt ”dynamic” graphs,
which are characterised by edges whose weight changes as a function of time.

XX @ k[T

(a) Original ski map (b)

Q

raph overlayed on the ski map

Figure 3.1: Graph model of a ski map

Page 3



H Ski maps

3.2 | The nature of arrivals

A further constraint given by the nature of the situation we are addressing is the fact that waiting times
are defined queues, and therefore it is assumed that those who arrived first at the ski lift are those who
are going to reach the top first. A similar argument is made for those skiing, as it is assumed that all
participants have approximately the same ability, and therefore will arrive in the order they departed the
top of the slope.

Such constraints on the order of arrivals, however, can be overcome by making use of an altered version of
Dijkstra’s algorithm. Indeed, while it generally would not be easily possible to find the shortest path on
a dynamic graph, the First-In-First-Out condition we encountered allows for the use of arrival times in
order to keep track of distances from the source edge [2].

3.3 | The algorithm

As anticipated, for the algorithm, the FIFO condition which characterizes this problem allows the use of a
modified Dijkstra algorithm, as follows:

Initialization:

For all nodes i except for s, initialize F A4 (t) as +00
Initialize EA4s(t) as t

Initialize S (set of unvisited nodes) with the whole N

Main loop:
While S # @
Select ¢ € S minimizing FAg;(t)
Set i as visited (S = S\ {i})
For all neighbors of ¢ (For all j such that (¢, j) € A):
EASj (t) = min{EAsj (t), Qi (EASl(t))}

4 | Conclusion

This project demonstrates the potential of such an application of Al to the tourism sector. Indeed, while
from a theoretical standpoint the model and implementation result correct according to the available
literature, the major obstacle is the lack of data gathered on ski resorts. This, however, should be taken
as an opportunity for further exploration with the necessary means.

Living now in an information society, ski resorts have available the resources needed to collect the necessary
data, which can be enriched by that stored by meteorological stations. The biggest step to be taken now is
to overcome the barrier created by data scarcity, which could be done by placing sensors on route arrivals
and departures. Another possibility would be to take the anonymous location of a representative sample
of volunteers, replicating on a smaller scale the approach used by larger map providers such as Google
Maps and Apple Maps.

Having explored both the literature and approach utilised, what should be apparent is that this project
is limited mainly by resources, rather than technological feasibility, and represents an opening in a
sector which is currently mostly unexplored, especially in Europe, which calls for further exploration and
expansion.

Additionally, we provide a Python implementation of the dynamic version of Dijkstra on our Github page,
together with a visualization of the graph. The page offers instructions on how to use the algorithm with
your own set of slopes, ski lifts and lengths.
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